Real-time informed path sampling for motion planning search
نویسندگان
چکیده
منابع مشابه
Realtime Informed Path Sampling for Motion Planning Search
Robot motions typically originate from an uninformed path sampling process such as random or low-dispersion sampling. We demonstrate an alternative approach to path sampling that closes the loop on the expensive collision-testing process. Although all necessary information for collision-testing a path is known to the planner, that information is typically stored in a relatively unavailable form...
متن کاملInformed Sampling for Asymptotically Optimal Path Planning
Anytime almost-surely asymptotically optimal planners, such as RRT*, incrementally find paths to every state in the search domain. This is inefficient once an initial solution is found as then only states that can provide a better solution need to be considered. Exact knowledge of these states requires solving the problem but can be approximated with heuristics. This paper formally defines thes...
متن کاملNear-Minimum-Time Motion Planning of Manipulators along Specified Path
The large amount of computation necessary for obtaining time optimal solution for moving a manipulator on specified path has made it impossible to introduce an on line time optimal control algorithm. Most of this computational burden is due to calculation of switching points. In this paper a learning algorithm is proposed for finding the switching points. The method, which can be used for both ...
متن کاملReal-time heuristic search for motion planning with dynamic obstacles
Robust robot motion planning in dynamic environments requires that actions be selected under real-time constraints. Existing heuristic search methods that can plan high-speed motions do not guarantee real-time performance in dynamic environments. Existing heuristic search methods for real-time planning in dynamic environments fail in the high-dimensional state space required to plan high-speed ...
متن کاملReal-time Sampling-based Motion Planning with Dynamic Obstacles
REAL-TIME SAMPLING-BASED MOTION PLANNING WITH DYNAMIC OBSTACLES by Kevin Rose University of New Hampshire, December, 2011 Autonomous robots are increasingly becoming incorporated in everyday human activities, and this trend does not show any signs of slowing down. One task that autonomous robots will need to reliably perform among humans and other dynamic objects is motion planning. That is, to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The International Journal of Robotics Research
سال: 2012
ISSN: 0278-3649,1741-3176
DOI: 10.1177/0278364912456444